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R-algebra

R is a commutative ring with identity 1 and all algebras and
modules will be unital over R.

By an algebra we sall mean an associative algebra over R.

Let A be an algebra.

We define Lie product [x , y ] := xy − yx and Jordan product
x ◦ y := xy + yx for all x , y ∈ A. Then (A, [, ]) becomes a Lie
algebra and (A, ◦) is a Jordan algebra.
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Superalgebra

An associative superalgebra, is a Z2-graded associative algebra.
This means that there exist R-submodules A0 and A1 of A such
that A = A0 ⊕A1 and AiAj ⊆ Ai+j , where indices are computed
modulo 2.
Elements in A0 ∪ A1, is said to be homogeneous of degree i and
we write |x | = i to mean x ∈ Ai . We say that A0 is the even and
A1 is the odd part of A.



Superalgebra

Define a product in A0 ∪ A1, the supercommutator, by

[x , y ]s = xy − (−1)|x ||y |yx

for x , y ∈ A.

Note that in case A = A0 the superproduct coincides

with the Lie product. The supercenter of A is the set

Z(A)s = {a ∈ A | [a, x ]s = 0 for all x ∈ A}.
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Generalized matrix algebra

A Morita context consists of two unital R-algebras A and B, two
bimodules (A,B)-bimodule M and (B,A)-bimodule N , and two
bimodule homomorphisms called the bilinear pairings
ΦMN : M⊗B N → A and ΨNM : N ⊗A M → B satisfying the
following commutative diagrams:



Generalized matrix algebra

M⊗B N ⊗A M ΦMN⊗IM //

IM⊗ΨNM
��

A⊗A M
∼=
��

M⊗B B ∼=
//M

and

N ⊗A M⊗B N ΨNM⊗IN //

IN⊗ΦMN
��

B ⊗B N
∼=
��

N ⊗A A ∼=
// N .



Generalized matrix algebra

We write this Morita context as (A,B,M,N ,ΦMN ,ΨNM)

then the set

G =

[
A M
N B

]
=

{[
a m
n b

]
| a ∈ A,m ∈ M, n ∈ N , b ∈ B

}
forms an R-algebra under matrix opreations, where at least one of
the two bimodules M and N is distinct from zero. Such an
R-algebra is usually called a generalized matrix algebra.



Generalized matrix algebra

We write this Morita context as (A,B,M,N ,ΦMN ,ΨNM)

then the set

G =

[
A M
N B

]
=

{[
a m
n b

]
| a ∈ A,m ∈ M, n ∈ N , b ∈ B

}
forms an R-algebra under matrix opreations, where at least one of
the two bimodules M and N is distinct from zero. Such an
R-algebra is usually called a generalized matrix algebra.



Generalized matrix algebra

By letting

G0 =

(
A

B

)
,G1 =

(
M

N

)
It is easily verified that

G =

(
A M
N B

)
is a superalgebra and

Z(G)s = Z(G).

Note that

Z(G) = {a⊕ b | a ∈ A, b ∈ B, am = mb, na = bn, for all m ∈ M, n ∈ N}

where

a⊕ b =

(
a 0
0 b

)
.
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It is a fascinating topic to study the connection between the
associative, Lie and Jordan structures on A. In this field, two
classes of mappings are of crucial importance.



Differential operators

One of them consists of mappings preserving a type of product, for
example, Jordan homomorphisms and Lie homomorphisms.

The other one is formed by differential operators, satisfying a type
of Leibniz formulas, such as Lie derivations and Jordan derivations.
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Differential operators

A standard example of a Lie derivation is of the form d = δ + τ ,
where δ : A → A is a derivation and τ : A → Z(A) is a linear map,
where Z(A) denotes the center of A, such that τ([a, b]) = 0, for
all a, b ∈ A.

Therefore, the Lie derivation d : A → A is in standard form iff
d = δ + τ , where δ is a derivation of A and τ is a linear center
valued map on A and vanishes at commutators. There are many
papers concerning the study of conditions, which Lie derivations of
rings or algebras are in standard form.
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Over the recent years there has been a considerable interest in the
study of superalgebra versions of Herstein’s theorem on
superderivations.

Motivated by [3] (2-local superderivations on a superalgebra
Mn(C)) and [1] (On superderivations and super-biderivations of
trivial extensions and triangular matrix rings), in this paper we will
address the structure of Lie superderivations on generalized matrix
algebra.
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For i = 0, 1 we say that a superderivation of degree i is a R-linear
map di : A → A such that

di (Aj) ⊆ Ai+j (index modulo 2) and

di (xy) = di (x)y + (−1)i |x |xdi (y) for all x , y ∈ A0 ∪ A1.

A superderivation of A is the sum of a superderivation of degree 0
and a superderivation of degree 1. Note that every superderivation
of degree 0 is actually a derivation from A to A .
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From now on, we assume that the modules M and N appeared in
the generalized matrix algebra G are 2-torion free (M is called
2-torsion free if 2m = 0 implies m = 0 for any m ∈ M).



Proposition
Let d0 be a Lie superderivation of degree 0 on generalized matrix
algebra G. Then d0 is of the following form

d0

(
a m
n b

)
=

(
α1(a) + α4(b) µ2(m)

ν3(n) β1(a) + β4(b)

)
where α1 : A → A, α4 : B → Z (A), µ2 : M → M, ν3 : N → N ,
β1 : A → B, β4 : B → Z (B) are linear maps satisfying the following
conditions

1. α1, β4 are Lie derivations;

2. β1([a, a
′]) = 0 for all a, a′ ∈ A and α4([b, b

′]) = 0 for all b, b′ ∈ B;

3. µ2(am) = aµ2(m) + α1(a)m −mβ1(a);

4. µ2(mb) = µ2(m)b +mβ4(b)− α4(b)m;

5. ν3(na) = nα1(a) + ν3(n)a− β1(a)n;

6. ν3(bn) = β4(b)n + bν3(n)− nα4(b)n;

7. α1(mn) = µ2(m)n +mν3(n)− α4(nm);

8. β4(nm) = nµ2(m) + ν3(n)m − β1(mn).



Proposition
Let d0 be a Lie superderivation of degree 0 on generalized matrix
algebra G. Then d0 is of the following form

d0

(
a m
n b

)
=

(
α1(a) + α4(b) µ2(m)

ν3(n) β1(a) + β4(b)

)
where α1 : A → A, α4 : B → Z (A), µ2 : M → M, ν3 : N → N ,
β1 : A → B, β4 : B → Z (B) are linear maps satisfying the following
conditions

1. α1, β4 are Lie derivations;

2. β1([a, a
′]) = 0 for all a, a′ ∈ A and α4([b, b

′]) = 0 for all b, b′ ∈ B;

3. µ2(am) = aµ2(m) + α1(a)m −mβ1(a);

4. µ2(mb) = µ2(m)b +mβ4(b)− α4(b)m;

5. ν3(na) = nα1(a) + ν3(n)a− β1(a)n;

6. ν3(bn) = β4(b)n + bν3(n)− nα4(b)n;

7. α1(mn) = µ2(m)n +mν3(n)− α4(nm);

8. β4(nm) = nµ2(m) + ν3(n)m − β1(mn).



Proposition

Let d1 be a Lie superderivation of degree 1 on generalized matrix
algebra G. Then d1 is of the following form

d1

(
a m
n b

)
=

(
mn0 −m0n am0 −m0b
n0a− bn0 n0m − nm0

)
for some m0 ∈ M, n0 ∈ N .
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In order to proceed with our work to identify sufficient conditions
on generalized matrix algebra G as a class of superalgebras for
which every Lie superderivations is written in the standard form we
are forced to characterize superderivations of generalized matrix
algebra and supercentral mapping of G which maps
supercommutators to 0.

Since every superderivation of degree 0 on a superalgebra A is
actually a derivation with the property d0(A0) ⊆ A0 and
d0(A1) ⊆ A1, and by concerning derivations of G in [5,
Propositions 4.2], we get:
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Proposition

Let δ1 : G → G be a linear map. Then δ1 is a superderivation
degree 1 if and only if δ1 has the form

δ1

(
a m
n b

)
=

(
mn0 −mon am0 −m0b
n0a− bn0 n0m − nm0

)
for some m0 ∈ M, n0 ∈ N .



Corollary

A superderivation δ on G is of the form

δ

(
a m
n b

)
=

(
α1(a) +mn0 −mon am0 −m0b + µ2(m)
n0a− bn0 + ν3(n) n0m − nm0 + β4(b)

)
for some m0 ∈ M, n0 ∈ N and linear maps α1 : A → A,
µ2 : M → M, ν3 : N → N , β1 : B → B, satisfying the following
conditions:

1. α1, β4 are derivations;

2. µ2(am) = aµ2(m) + α1(a)m, µ2(mb) = µ2(m)b +mβ4(b);

3. ν3(na) = nα1(a) + ν3(n)a, ν3(bn) = β4(b)n + bν3(n);

4. α1(mn) = µ2(m)n +mν3(n), β4(nm) = nµ2(m) + ν3(n)m.



Proposition

Let G be a generalized matrix algebra. A linear mapping τ is
supercenter valued and vanishes at supercommutators if and only if
τ has the presentation

τ

(
a m
n b

)
=

(
γ1(a) + γ4(b)

λ1(a) + λ4(b)

)

where γ1 : A → Z (A), γ4 : B → Z (A), λ1 : A → Z (B),
λ4 : B → Z (B) are linear maps vanishing at commutators, having
the following properties:

1. γ1(a)⊕ λ1(a) ∈ Z (G) and γ4(b)⊕ λ4(b) ∈ Z (G);
2. γ1(mn) = −γ4(nm) and λ1(mn) = −λ4(nm).
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Following the method of [2, Theorem 6], the next theorem states a
necessary and suffcient condition for a Lie superderivation on a
general matrix algebra to be in stadard form.



Theorem
Let G be a generalized matrix algebra. A Lie superderivation d on
G of the form

d

(
a m
n b

)
=

(
α1(a) +mn0 −m0n + α4(b) am0 −m0b + µ2(m)

n0a− bn0 + ν3(n) β1(a) + n0m − nm0 + β4(b)

)
is in standard form if and only if there exist linear mappings
γA : A → Z (A) and γB : B → Z (B) satisfying:
1. α1 − γA is a derivation on A and β4 − γB is a derivation on B;
2. γA(a)⊕ β1(a) ∈ Z (G) and α4(b)⊕ γB(b) ∈ Z (G);
3. γA(mn) = −α4(nm) and β1(mn) = −γB(nm).
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